
1

Decentralized Scheduling for Concurrent Tasks
in Mobile Edge Computing via Deep

Reinforcement Learning
Ye Fan, Jidong Ge, Member, IEEE, Sheng Zhang, Member, IEEE, Jie Wu, Fellow, IEEE, and Bin Luo

Abstract—Mobile Edge Computing (MEC) is a promising solution to enhance the computing capability of resource-limited networks.
A fundamental problem in MEC is efficiently offloading tasks from user devices to edge servers. However, there still exists a gap to
deploy in real-world environments: 1) traditional centralized approaches needs complete information of edge network, ignoring the
communication costs generated by synchronization, 2) previous works do not consider concurrent computation on edge servers, which
may cause dynamic changes in the environment, and 3) the scheduling algorithm should deliver individualized decisions for different
users independently and with high efficiency To solve this mismatch, we studied a multi-user task offloading problem where user devices
make offloading decisions independently. We consider the concurrent execution of tasks and formulate a non-divisible and delay-aware
task offloading problem to jointly minimize the dropped task ratio and long-term latency. We propose a decentralized task scheduling
algorithm based on DRL that makes offloading decisions without knowing the information of other user devices. We employ Double-DQN,
Dueling-DQN, Prioritized Replay Memory, and Recurrent Neural Network (RNN) techniques to improve the algorithm’s performance. The
results of simulation experiments show that our method can significantly reduce the long-term latency and dropped task ratio compared
to the baseline algorithms.

Index Terms—Mobile edge computing, task offloading, resource allocation, deep reinforcement learning, deep q-learning.

✦

1 INTRODUCTION

W ITH the rapid growth of computing and communi-
cation technologies, especially mobile network ser-

vices, many computation-intensive and data-intensive tech-
nologies have emerged, such as augmented reality, virtual
reality, Internet of Things and Internet of Vehicles, etc.
This has led to explosive growth in the amount of data
generated at the user end. The traditional cloud computing
architecture can-not meet the needs of low latency, high
bandwidth, and localized processing required by massive
mobile devices. Mobile edge computing (MEC), also known
as fog computing, is a new mobile service architecture to
improve application performance [1]. MEC sinks comput-
ing, storage, and processing functions from cloud servers
to edge servers, providing users with proximity comput-
ing and processing capabilities, reducing network latency,
improving user experience, effectively preventing network
congestion and latency problems.

Edge computing improves the quality of services by
placing edge servers close to users but still face several chal-
lenges. A significant problem is properly assigning server

• Y. Fan, J. Ge and B. Luo are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210008, China, and
also with the Software Institute, Nanjing University, Nanjing 210008,
China.
E-mail: mg21320002@smail.nju.edu.cn, {gjd, luobin}@nju.edu.cn.

• S. Zhang is with the State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology, Nanjing University,
Nanjing 210008, China.
E-mail: sheng@nju.edu.cn.

• J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

resources to tasks to reduce computation costs and max-
imize the edge network’s long-term efficiency. To address
this issue, the first question is whether or not the computing
tasks generated by the user devices should be offloaded.
The second question is which edge node the user device
should offload if it chooses to do so. Users can obtain a faster
response time by offloading work to edge nodes because the
compute capabilities of edge nodes are higher than those
of user devices. Because heterogeneous devices, dynamic
networks, and geographic differences affect the processing
speed of offloaded tasks, it is difficult for the scheduling
algorithm to consider all factors. The user’s tasks can be
split into directed acyclic graphs (DAGs) that can be run
on different edge nodes. In this paper, we focus on the
problem of indivisible task offloading. This is because the
focus of this paper is not to make the scheduler obtain opti-
mal efficiency but to achieve better results than centralized
scheduling using a decentralized scheduler.

Some previous works [2]–[5] have used centralized ap-
proaches to solve the offloading problem. These algorithms
can generate optimal or near-optimal solutions for offload-
ing decision-making, but they require complete information
about the edge network. Algorithms in this centralized man-
ner require synchronization of all user device information
and produce a large communication overhead. This cen-
tralized manner is not suitable for the natural environment
where each user device is independently executed.

In contrast to these centralized methods, we focus on
decentralized task offloading in this work. In a decentral-
ized algorithm, each user device makes offloading deci-
sions without needing information from other devices. A
decentralized algorithm is more challenging to design but



2

has several advantages over centralized algorithms. First, it
avoids the communication overhead imposed by synchro-
nizing the information of all devices. In edge computing
systems, the communication overhead is typically larger
than the computation overhead. Neglecting the commu-
nication overhead required to synchronize states is not
practical for real systems. Second, the size of the edge
network usually varies over time. A decentralized approach
can decouple the decision-making from the model training,
thereby improving scalability. Third, there are many hetero-
geneous devices in the edge network, which have different
processing performance and tasks, thus having different
needs for offloading policies. Decentralized algorithms can
learn offloading policies for each device independently, thus
adapting to heterogeneous environments.

In this work, we employ DRL to make offloading deci-
sions. This is because previous studies [6]–[10] have shown
that DRL algorithms can quickly adapt to complex sys-
tems and efficiently output offloading decisions with a low
long-term cost. It is not practical to directly apply deep
reinforcement learning algorithms to the task offloading
decision problem. DRL algorithms require a large amount of
interaction with the environment and vast amounts of trial
and error to learn. DRL algorithms often require millions
of training episodes since DRL algorithms need to learn
from random explorations. Second, previous works [6], [7],
[10] only consider serial executions of all tasks. However,
services on edge servers are often deployed in contain-
ers and different services are encapsulated into containers
running concurrently on the server [11]. In this way, the
tasks offloaded later and the ones offloaded earlier can
be executed concurrently, and the schedule decisions affect
the state of the system and the execution of the already
offloaded tasks.

In this work, we consider a dynamic, concurrently ex-
ecuting environment and a long-term optimization prob-
lem. We suppose that all tasks are executed concurrently
on the server and that the network, geographic location,
and execution speed change randomly in the environment.
Tasks are indivisible and have a deadline; if the deadline is
exceeded, then the task fails to be executed. We propose
a Decentralized Task Offloading Scheduling Algorithm
called DOSA for edge computing tasks based on deep
reinforcement learning. It can make offloading decisions
independently for each user device by observing the state
of the system, deciding which edge node to offload to,
and quickly adapting to different environments. The neural
network model in our DRL algorithm is also trained by
interacting with multiple environments in order to improve
the model’s adaptability. In our algorithm, task execution
and transmission can fill several time slots, and we fine-tune
the DQN (Deep Q-learning) algorithm [12] asynchronously
update reward to adapt to this latent reward scenario. Our
primary contributions are summarized as follows:

• Task offloading problem in MEC systems: We formulate a
task offloading problem for non-divisible and delay-
aware tasks. Tasks are performed concurrently at
edge nodes and transmitted through wireless net-
work queues. Our technique aims to minimize the
dropped task ratio and long-term latency of of-

Computing Task Scheduler Edge Server

Result & Reward

Generate new task

Offload

Transmit

Process

Fig. 1. System illustration of multiple edge nodes, base stations and user
devices edge environment.

floaded tasks jointly.
• DRL-based Task offloading Algorithm: We developed a

decentralized algorithm based on deep reinforcement
learning to make offloading decisions without know-
ing the complete information of the edge network.
In order to decrease the transmission cost and the
computing cost of user devices, we partition the
neural network into two parts: the intermediate rep-
resentation component on the server and the decision
component on the user device. Therefore, only two
network layers need to be deployed on each user
device. We asynchronously update reward to accel-
erate algorithm convergence. We employ Dueling
DQN, Double DQN, and Prioritized Replay Memory
techniques to improve the model training speed and
RNN to encode context information to improve the
adaptivity of the model.

• Performance Evaluation: We performed simulation ex-
periments to evaluate the algorithm. Compared with
the baseline algorithms, our algorithm can rapidly
learn better decision policies and significantly reduce
the system’s long-term latency and dropped task
ratio.

The remaining chapters of this paper are organized as
follows. We motivates our work in Section 2. In Section 3,
we describe the model of the system and formulate the
task offloading problem. In Section 4, we describe the DRL
network architecture and present the decentralized offload-
ing algorithm. We present the results of the experimental
evaluation in Section 5. We present related work in Section 6
and give the conclusion of the paper in Section 7.

2 MOTIVATION

2.1 Cost of Centralized Scheduling
There are two advantages of edge computing. First, it min-
imizes the communication overhead between device and
server. Second, it protects the user’s privacy because there is
no need to upload user data to the cloud server. However,
these two advantages are largely surrendered when cen-
tralized work offloading is performed. Since the scheduler
needs to gather information about each task before making
a decision, this violates the user’s privacy and also raises
the cost of communication. Higher communication costs can



3

Scheduler Input

Network 

Information

Global Task Information

Task of Task of Task of …

Local Information Information generating communication costs 

Fig. 2. The illustration of information needed by a task scheduler. The
centralized scheduler needs to get global information. The local sched-
uler only needs the network information and local task information, and
the local information does not need to be transmitted over the network,
so the communication cost is significantly reduced.

significantly increase the money cost of network bandwidth
required. Adopting decentralized scheduling can save thou-
sands of dollars every month if edge network traffic reaches
several terabytes per month. Network overhead for edge
computing is lower than for cloud computing, but network
fees are still a relatively significant expense.

A common method is allowing users to make scheduling
decisions locally and decide whether tasks should be up-
loaded to the edge server. When the scheduler requires other
users’ information, the communication cost required by the
scheduling algorithm grows with the square of the number
of users. In contrast, when the algorithm requires just local
information, the communication cost of the algorithm does
not change as the number of users changes. And in this
way, the task information of one user is not exposed to other
users’ schedulers, protecting the privacy of the user.

2.2 Concurrently Running Tasks
At a time when containerized applications are prevalent,
edge servers can create independent processes to run for
each user task, which can greatly reduce the response time
of the task and improve the throughput of the system. How-
ever, the previous scheduling algorithms seldom considered
the scenario of concurrently running tasks. After analysis,
we found that the concurrent task running scenario is more
complex than the traditional serial scenario.

Fig. 3 shows a diagram of serial and concurrent tasks. As
you can see, in the serial scenario, the runtime of all tasks is
only determined by the tasks and environment state before
they start running. But concurrent tasks are also influenced
by tasks that are added later. Since the uploading of tasks
is often random, traditional optimization methods are not
appropriate.

Edge computing networks are also highly heterogeneous
and dynamic. For example, the size and number of user
tasks are frequently unpredictable, and the network connec-
tivity situations are not uniform. A network in the same
server room may have high bandwidth, but the user’s
network may be slow. This makes it important for the al-
gorithm to dynamically adjust to the different and changing
environments.

Deep reinforcement learning can learn the implicit prob-
abilistic relationships between parameters in complex en-
vironments, and the system grows more effective as the
amount of data increases. It is worth trying the DRL al-
gorithm for scheduling edge networks in such complicated
environments.

Serial

Concurrent

Effect Serial Task Concurrent Task

CPU

CPU

Fig. 3. The illustration of impact between serial or concurrent tasks.

2.3 Convergence of DRL
We designed a decentralized algorithm that requires only
one user’s task information and runs locally on user device,
which reduces communication costs and protects the user’s
privacy. This also comes at a cost: deep learning methods
such as the DRL algorithm usually require a large number
of samples for training. And the decentralized approach
makes the model receive only local user information, which
makes the algorithm difficult to converge while the amount
of information is greatly reduced. Because the complexity
of the environment is increased by considering concurrency
scenarios, the cost required for algorithm training is even
higher. To solve these problems, we’ve made the following
efforts:

• We adopt asynchronous reward updating. If the up-
dates are synchronous, there will be a delay between
the rewards obtained by the model and the decision,
which requires many rounds to be corrected. Using
asynchronous updating makes it not necessary for
the model to learn the match between reward and
decision by itself, which significantly speeds up the
training. Concurrently running increases the uncer-
tainty of the environment. Using only local informa-
tion will reduce the amount of information in the
inputs to the model. Both settings can make it more
difficult for the model to converge. Asynchronous
updates can simplify the relationship between the
model’s learning to the state and the reward, thus
accelerating the convergence of the model.

• Allowing different users’ local models to use differ-
ent parameters so that each user can schedule based
on their own experience instead of using the same
strategy. This also speeds up the training process.

The comparison of the convergence effects of the algorithms
is shown in Section 5.

3 PROBLEM FORMULATION

As the illustration given in Fig. 1, we consider a set of
edge server nodes E = {1, 2, ..., 𝐸}, and a set of user mobile
devices U = {1, 2, ...,𝑈}. Both user devices and edge nodes
have certain computing and network communication capa-
bilities. We apply discrete fixed time slots T = {1, 2, ..., 𝑇} to
simulate the real environment execution, with each time slot
lasting Δ seconds. The system goes through a cycle in each
time slot from task generation, scheduling, execution, and
generating rewards.



4

3.1 User Device

Many edge computing tasks are employed for embedded
device management. For example, path planning [13], intel-
ligent home control [14], smart early warning systems [15],
etc. The user devices must wait for the results before per-
forming the next task. We assume that if the user device 𝑢
checks that there is no running task at the beginning of each
time slot, then it has a certain probability 𝑝𝑢 of generating
a new computational task. Due to the program’s locality,
it’s costly to arbitrarily divide a task into different slices.
We focus on the problem of indivisible task offloading,
where each task is either executed on the local user device
or offloaded to the edge server. Once a task has been
generated, the task-relevant information is sent to the task
scheduler, which makes the offload decision. The scheduler
is deployed on the local user device. If the scheduler decides
to process the task locally, the task will start running on the
user device until it ends. Otherwise, the scheduler decides
which edge server to offload the task to, and the user device
transmits the task to the edge server through the wireless
network channel. When the task has been transmitted, the
edge server starts executing this task concurrently until it
finishes, and the result of the task execution is returned to
the user device.

3.1.1 Task
Denote the task created by user device 𝑢 at time 𝑡 as 𝑤𝑢,𝑡 .
Each task has several basic attributes as described below.
Denote 𝑠(𝑤) as the size of the data for task 𝑤, i.e., the amount
of data that needs to be transferred is 𝑠(𝑤) 𝑏𝑖𝑡 when the task
is transmitted through the wireless network channel. Denote
the amount of computation for task 𝑤 as 𝑐(𝑤), i.e., 𝑐(𝑤)
CPU cycles are required to process the entire task. Before the
𝑡-th time slot, the computation amount has been executed
of task 𝑤 is denoted as 𝑐(𝑤, 𝑡). Each task 𝑤 has a deadline
𝑑 (𝑤). Suppose the current time is 𝑡′. If 𝑡′ − 𝑡 > 𝑑 (𝑤𝑢,𝑡 ) and
the task has not finished executing, i.e. 𝑐(𝑤𝑢,𝑡 , 𝑡′) < 𝑐(𝑤𝑢,𝑡 ),
the system immediately stops the execution of the task and
returns a notification that the task has failed. The deadline
setting we use is the same as some previous work [2], [6].
A deadline is provided by users. If the task runs out of the
deadline, it means that the task is being executed too slowly
and is considered by users as disposable. Of course, we can
set it to continue running after the deadline, but this will
cause too many tasks to run on the server and affect the
availability of the edge system.

3.1.2 Offloading Decision
For each new work 𝑤𝑢,𝑡 generated in user device 𝑢𝑖 , the
user device separately creates an offloading decision uti-
lizing the scheduling algorithm for each user device. Let
the choice be denoted as 𝐴(𝑤𝑢,𝑡 ) with 𝐴(𝑤𝑢,𝑡 ) ∈ {0, 1, ..., 𝐸}.
We set 𝐴(𝑤) = 0 if the scheduler decides to run the task
on the local user device. If 𝐴(𝑤) = 𝑒, 𝑒 ∈ E, then the
scheduler makes the decision to offload the task 𝑤𝑢,𝑡 to
the edge node 𝑒. We assume that task processing needs a
minimum speed. So, while executing tasks concurrently on
an edge server, there needs to be a maximum task amount,
otherwise, it may result in a single task running too slowly.
The scheduler examines if the task amount on the edge

TABLE 1
Summary of Main Notations

Notation Description
E, 𝑒 the set of edge computing servers and the 𝑒-th edge

server
U, 𝑢 the set of user devices and the 𝑢-th user device
T, 𝑡 the set of time slots and the 𝑡-th time slot
A, 𝑎 the action space and action of offloading decision
𝑤𝑢,𝑡 the task generate by user device 𝑢 at 𝑡-th time slot
𝑔𝜆 Channel gain of channel 𝜆
𝑑𝑢,𝑒 Distance between user device 𝑢 and edge server 𝑒
𝑓 (𝑒) the computing capacity of equipment 𝑒
𝑝 (𝑢) the probability of generating a new task for user

device 𝑢
𝜆𝑒,𝑘 the 𝑘-th wireless channel of edge server 𝑒
𝜔 Background noise frequency
𝑊 bandwidth of wireless channel
𝑝𝑙 Path loss exponent

𝜋 (𝑎 |𝑠; 𝜃 ) the policy of DRL algorithm
𝑐 (𝑡 , 𝑤) the computation amount of task 𝑤 at time slot 𝑡

𝑠 (𝑤) , 𝑐 (𝑤) ,
𝑑 (𝑤)

the transmission data size, computation amount
and time limit of task 𝑤

𝑙𝑡 (𝑤) , 𝑙𝑒 (𝑤) ,
𝑙 𝑓 (𝑤)

the time of waiting for idle channel, transmitting
and executing of task 𝑤

𝑛(𝑡 , 𝑒) ,
𝑛𝑚𝑎𝑥 (𝑒)

the task pool size at time slot 𝑡 , and the maximum
amount of task pool size of edge server 𝑒

𝑟 (𝑤) , 𝑟𝑐𝑜 (𝑤) ,
𝑟𝑐ℎ (𝑤) , 𝑟𝑠𝑢 (𝑤)

the total reward, computation reward, transmit
reward and success reward of task 𝑤

node has reached the maximum range of the edge node,
and if it has reached the maximum, i.e., 𝑛(𝑡, 𝑒) ≥ 𝑛𝑚𝑎𝑥 (𝑒),
then the scheduler adjusts its decision 𝐴(𝑤) to 0, setting
the task to execute locally. We set different running speed
parameters for different hardware. We generated different
devices by random combinations of this hardware. Due to
implementation cost considerations, we did not consider
the nonlinear variation in running speed for the same task
under different hardware. However, due to the randomness
of the operating parameters of the server device, the simu-
lation environment can simulate this heterogeneity feature
within a certain range.

3.1.3 Local Computing
In the environment we designed, there can be only one
running task on a local user device simultaneously. Locally
executed tasks do not need to go through channel data
transmission. So when the scheduler decides to execute the
task locally, we can explicitly calculate the time when the
task ends.

𝑙 𝑓 (𝑤𝑢,𝑡 ) =
𝑐(𝑤𝑢,𝑡 )
𝑓𝑢

,

𝐴(𝑤𝑢,𝑡 ) = 0,
(1)

where 𝑓𝑢 denotes the CPU frequency of user device 𝑢, and
𝑙 𝑓 (𝑤𝑢,𝑡 ) is the finish time of task 𝑤𝑢,𝑡 .

3.2 Edge Server
Concurrency and parallelism techniques have been widely
employed in real-world systems, and using these techniques
can idle I/O operations and effectively lower the average



5

Tasks

w1

w2

w3

Fig. 4. An example of task transmission on one channel. The task 𝑤3
was generated at time slot 𝑡1, but it takes 𝑙𝑡 (𝑤3 ) time slots to find an idle
channel for transmission.

Tasks

w1

w2

w3

Fig. 5. An example of task execution on edge node. The edge server
runs tasks concurrently between 𝑡1 and 𝑡2.

waiting time for tasks. Through virtualization approaches,
it has become possible to standardize the speed of program
execution control in cloud and edge computing services, in
order to provide fair and stable computing resources for
each user application. As a result, we assume that jobs are
run concurrently in each edge node and that the computa-
tional speed gained by tasks run concurrently on each node
is the same. The main difference between concurrent and
serial execution is that concurrently run tasks are influenced
not just by previously run tasks but also by tasks that join
in later. In contrast, serially executed tasks are only affected
by the tasks that came into the waiting queue before them.

3.2.1 Transmission Queue
The wireless network channel transmission follows a FIFO
manner. We set that each edge server has a fixed positive
integer of 𝐾 channels for communicating with user devices,
denoted by the notation 𝜆𝑒,𝑘 , 𝑘 ∈ {1, 2, ..., 𝐾}. Each channel
can be connected to a single user device. After the user
device that occupies the channel first completes its trans-
mission, other user devices can connect to this channel and
offload the task through it. The computational model of
channel transmission speed is shown below.

All channel transmissions in our wireless network com-
munication model are orthogonal to each other, and the
channel communication speed is mainly affected by back-
ground noise power, path loss, and small-scale fading. The
transmission rate from a mobile device 𝑢 to an edge node 𝑒
during task offloading can be calculated as follows:

𝑟 (𝑢, 𝑒) = 𝑊 log2 (1 +
𝑝𝑢𝑔𝜆𝑒,𝑘

𝜔𝑢,𝑒 +
∑
𝑢′∈U,𝑢′≠𝑢 𝑝𝑢′𝑔𝜆𝑒,𝑘

). (2)

Here we use 𝑔𝜆𝑒,𝑘 = 𝑑−𝑝𝑙 (𝑒, 𝑢) to denote the channel gain
of the channel 𝜆𝑒, 𝑘 , 𝑑 (𝑒, 𝑢) represents the distance between
the edge node 𝑒 and the user device 𝑢, 𝑝𝑙 represents the
path loss exponent and the task is transmitted through the
channel 𝜆𝑒, 𝑘 . The transmission frequency of user device
𝑢 is denoted using 𝑝𝑢, and 𝑔 denotes the channel gain.

𝑊 denotes the channel’s bandwidth, and 𝑤 denotes the
background noise frequency of the channel. We assume that
the transmission rate 𝑟 of the channel is fixed.

At each time slot, after the scheduler on the user device
makes the offloading decision, the tasks determined to be
offloaded are connected to the channel of the corresponding
edge node for transmission. However, since the channel
amount of the edge node is limited, the latecomer tasks can
only wait until the previous tasks have finished transmit-
ting. Suppose a task 𝑤 needs to be offloaded to the edge
node 𝑒. Denoting the remaining transmitting time of the
channel 𝜆𝑒,𝑘 at the 𝑡-th time slot is 𝑙 (𝑡, 𝜆𝑒,𝑘), indicating the
channel will be idle until 𝑡 + 𝑙 (𝑡, 𝜆𝑒,𝑘). If 𝑙 (𝑡, 𝜆𝑒,𝑘) = 0, then
the task can choose the channel to transmit at time 𝑡.

So if there is no other task waiting for transmiting,
the wait time to start transmission of task 𝑤𝑢,𝑡 is 𝑙𝑡 (𝑤) =

𝑚𝑖𝑛
1≤𝑖≤𝐾

𝑙 (𝑡, 𝜆𝑒,𝑘). If there are other tasks waiting for trans-

miting to the edge node 𝑒 before 𝑤𝑢,𝑡 , denote them as
𝑤𝑖 , 𝑖 ∈ {1, 2, ..., 𝑛}. Suppose the task 𝑤𝑢,𝑡 start transmitting
at time slot 𝑙𝑡 (𝑤𝑢,𝑡 ), it can be calculated as:

𝑙𝑡 (𝑤𝑢,𝑡 ) = min
1≤𝑖≤𝑘

𝑙 (𝑡 + 𝑇𝑏, 𝜆𝑒,𝑘),

𝑇𝑏 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

𝑙𝑡 (𝑤𝑖).
(3)

As the example given in Fig. 4, the task 𝑤3 need to wait
until the former task finishes transmission and there is an
idle channel. Although some tasks are generated at the same
time, we order them according to their generation order,
so there is no problem with many tasks competing for one
channel.

If the task takes too long to transmit, the deadline is ex-
ceeded before the transmission is completed. Then the task
is dropped. Thus, we can calculate the task transmission
time as

𝑙𝑒 (𝑤) = 𝑚𝑖𝑛 { 𝑠(𝑤)
𝑟 (𝑢, 𝑒) , 𝑑 (𝑤) − 𝑙

𝑡 (𝑤)}. (4)

3.2.2 Edge Computing
After the tasks are transmitted in the channel, they will enter
the task pool in the edge node for execution. We assume that
the task pool size of each edge node is capped, and that all
tasks running on the same machine can be executed at the
same speed. Suppose the CPU computing frequency that
device 𝑒 can provide for task processing is 𝑓𝑒, where there
are 𝑛(𝑡, 𝑒) tasks being executed in the task pool, including
the tasks which just finished transmitting at the 𝑡 − 1-th time
slot. Then each task on edge server 𝑒 is executed at a CPU
frequency of 𝑓𝑒

𝑘
.

Denote the remaining computation to be processed for
task 𝑤 at moment 𝑡 is 𝑐𝑟 (𝑡, 𝑤) with an initial value of 𝑐(𝑤)
and at the end of the time slot its remaining computation
size is

𝑐(𝑡 + 1, 𝑤) = 𝑐(𝑡, 𝑤) − 𝑓𝑒Δ

𝑛(𝑡, 𝑒) . (5)

If the remaining computation size is zero, i.e. 𝑐(𝑡, 𝑤) = 0,
then the task execution ends. The task 𝑤𝑢,𝑡 ’s execution time
can be calculated as:

𝑙 𝑝 (𝑤𝑢,𝑡 ) = min 𝑡𝑖 ,

𝑠.𝑡. 𝑐(𝑤𝑢,𝑡 ) ≤
|T |∑︁

𝑡=𝑡+𝑙𝑒 (𝑤𝑢,𝑡 )

𝑓𝑒Δ

𝑛(𝑡, 𝑒) .
(6)



6

As the example given in Fig. 5, the three tasks have the
same amount of computation, all of which are two units.
However, due to concurrent execution, the edge server
divides its computational resources equally, and task 𝑤2
takes 4 time slots to finish.

The task process result can be calculated as:

𝑆𝑢𝑐𝑐(𝑤) =
{
𝑇𝑟𝑢𝑒, 𝑐(𝑙 𝑝 (𝑤), 𝑤) = 0,
𝐹𝑎𝑙𝑠𝑒, 𝑐(𝑙 𝑝 (𝑤), 𝑤) > 0.

(7)

Since the execution speed of a task is also affected by
tasks that are added to the task pool later, we cannot predict
precisely when the execution of a task will end, but we can
know its range. If we assume that no new task will be added
to the task pool of edge node 𝑒 𝑗 after time slice 𝑡, then the
computation time of task w in it should be the minimum
value of the task end time. The maximum value of the task
end time is the end time of the task when the task pool keeps
running at full capacity:

𝑐(𝑤𝑢,𝑡 )
𝑓𝑒Δ

≤ 𝑙 𝑝 (𝑤𝑢,𝑡 ) ≤
𝑛𝑚𝑎𝑥 (𝑒)𝑐(𝑤𝑢,𝑡 )

𝑓𝑒Δ
. (8)

For terminated tasks, i.e., failed or completed tasks, the
edge node returns the execution information of the task to
the user device. Following the previous work, we assume
that the size of the return value of a task is often much
smaller than the size of the task input and the task itself.
So, we do not consider the time required for the task output
return in this work.

3.3 Problem Definition
For a task 𝑤 that has completed its run, independent of
whether it succeeds or fails in the run outcome, we define
the amount of data completed in its transmission in the
channel as 𝑠 𝑓 (𝑤), and the channel reward as:

𝑟𝑐ℎ (𝑤) = 1 − 𝑠 𝑓 (𝑤)
𝑠(𝑤) . (9)

Denote the entire computation in the computing device at
the end of the task is 𝑐 𝑓 (𝑤), and the computation reward
can be computed as:

𝑟𝑐𝑜 (𝑤) = 1 − 𝑐 𝑓 𝑖𝑛 (𝑤)
𝑐(𝑤) . (10)

Define the success reward of the task 𝑤 as 𝑟𝑠𝑢 (𝑤). If the
task fails, the algorithm needs to get a penalty. If the task is
successfully finished, then it will generate a positive reward.
So we define the success reward as:

𝑟𝑠𝑢 (𝑤) =
{
𝐶 𝑓 , 𝑆𝑢𝑐𝑐(𝑤) = 𝐹𝑎𝑙𝑠𝑒,
𝐶𝑠 , 𝑆𝑢𝑐𝑐(𝑤) = 𝑇𝑟𝑢𝑒,

(11)

where𝐶 𝑓 and𝐶𝑠 are both constant value, and𝐶 𝑓 < 0, 𝐶𝑠 > 0.
We calculate the total reward of one task result as:

𝑟 (𝑤) = 𝑟𝑐ℎ (𝑤) + 𝑟𝑐𝑜 (𝑤) + 𝑟𝑠𝑢 (𝑤). (12)

Our objective is to minimize the total task latency and
dropped task rate, which is equivalent to maximizing the
long-term reward of all tasks. Therefore, our offloading
scheduling problem can be formulated as follows:

𝑅(𝐴) =maximize
∑︁

𝑡∈T,𝑢∈U
𝑟 (𝑤𝑢,𝑡 ),

s.t. constraints (1) - (12) .
(13)

This formula means we want to find the best function map-
ping tasks to offloading decisions and obtain the maximum
long-term reward. Our fundamental assumptions are that:
1.The scheduling algorithm can only get local information,
not global information. 2.The task fails if it exceeds the dead-
line and stops running directly. 3.The edge server distributes
the CPU capacity equally for each task. 4.The time usage of
the scheduling algorithm is ignored. 1.These settings make
our environment more complex while the state space is quite
small, and the algorithm convergence will be more challeng-
ing. 2.We do not address the simulation of heterogeneous
real servers, and also, the simulation of concurrency may
not be accurate enough. 3.We do not take into account the
time of the scheduling algorithm running, which is different
from the real environment. Because the tasks are running
concurrently on edge servers, this problem is NP-Hard and
unpredictable. Traditional prediction or optimization-based
approaches have difficulty achieving optimality in unstable
environments. Deep learning models can capture the un-
derlying probabilistic relationships between variables and
hence acquire convergent methods even if the environment
is uncertain. Also, if the environment changes dynamically,
the approach may adapt with it. In the following chapter,
we will present the DRL-based solution.

4 ALGORITHM DESIGN

We propose a decentralized DRL algorithm in this chapter
for tackling the offloading problem defined in the previous
section. This scheduling algorithm works on the user de-
vices and therefore does not require complete knowledge of
the edge network. However, when there is a lack of informa-
tion, the original DRL algorithm has difficulty converging.
To address this issue, we improved the original DRL algo-
rithm by incorporating asynchronous reward updating and
localized model parameters, which improved the program’s
convergence performance.

4.1 DRL Model
In DRL, q-value can be viewed as the expected reward of
taking an action in the current state. Traditional algorithms
use a q-value table to capture the state and q-value infor-
mation and are therefore not generalizable. Utilizing neural
networks to fit the q-function enables agents to adapt to
complex, dynamic systems without knowing the complete
information of the system.

4.1.1 State
After the initialization of all user devices in each time slot
is completed, the user devices observe the status informa-
tion of all edge servers, channels, and tasks. This state
information is used to obtain the corresponding offload
decisions. For user device 𝑢, define 𝑆𝑢 (𝑡) = (T ,Q, C,U) as
the observation of the system at the 𝑡-th time slot:

• T denotes the information about the task 𝑤𝑢,𝑡 which
will be scheduled, including task size 𝑠(𝑤𝑢,𝑡 ), com-
putation size 𝑐(𝑤𝑢,𝑡 ), and task deadline 𝑑 (𝑤𝑢,𝑡 ).

• Q denotes the status information of channel trans-
mission in edge servers, containing the percentage
of transmission of tasks in all channels, the channel



7

FC

Layer

Context 
Variable

State

Inputs FC Layers

ReLU

FC

Layer

ReLU

V

Ad

+

A&V Layers

AQ

T1 T2 Tk

Context Encoder

...

...

...

Fig. 6. The DOSA neural network architecture. 𝑇𝑖 denotes the context information saved in user devices at time slot 𝑖. 𝑄 denotes the expected value
of future reward. 𝐴𝑑 denotes the advantage function which outputs offsets of action can bring, and 𝑉 denotes the mean value of 𝑄. 𝐴 denotes the
predicted best action.

transmission speed, and the maximum task capacity
of the channel.

• C denotes the execution information of tasks in the
edge server (ES), containing the percentage of tasks
executed, the CPU execution speed of ES, the max-
imum task capacity of ES, and whether the task
reaches the deadline.

• U denotes the status of all user devices, containing
their processing capacity, transmission efficiency, etc.

The dimension size of the states may change in each time
slot. For example, the task amount in the task pool of edge
nodes and the number of tasks in the transmission channel
may change over time. To guarantee that the dimension of
all states remains constant, we set the dimension size of the
states to stay at the maximum feasible value, with all 0s at
vacancies.

For each user 𝑢, 𝑢 ∈ U, the state information it sees is
different. Since our method is decentralized, the decisions
of each user device are independent of any other and do not
need the complete information of the system. Therefore, the
observation of a single user device does not include other
user devices’ states.

4.1.2 Action
After observing the environment and obtaining the state
of the environment in this time slot, the system feeds
the observation to the scheduler and gets the offloading
decision, 𝐴(𝑤), 𝐴(𝑤) ∈ A. Defining A as action space, ie.,
A = {0, 1, ..., 𝐸}, where 𝐴(𝑤) = 0 means the task is running
in the local user device and 𝐴(𝑤) > 0 means offloading to
the 𝐴(𝑤)-th edge server.

It is worth noting that the offloading decision generated
by the scheduler is not always the actual policy executed
by the environment. When the tasks on the server exceed
the maximum quantity, the scheduler may still produce the
decision to offload to the server, but this task can only be
executed locally. We want the choice made by the model
each time to be the optimal choice, so if the model chooses
a server that has exceeded the max task amount, it should
only be run locally. If not, it is not beneficial for the model
to learn the ability to choose the optimal server at the first
time.

4.1.3 Context
To learn from the past experience, user devices save the
context information in DOSA. Denote the observed states,

actions, and rewards obtained by the user device 𝑢 at the
𝑡-th time slot as 𝑆𝑢,𝑡 , 𝐴𝑢,𝑡 , and 𝑅𝑢,𝑡 , respectively, and the
matrix of all observed state sequences between time 𝑡1 and
𝑡2 as 𝑆𝑢 [𝑡1, 𝑡2], 𝐴𝑢 [𝑡1, 𝑡2],and 𝑅𝑢 [𝑡1, 𝑡2].

Context is defined as the collection of states, actions, and
rewards observed between a range of time slots. Setting
the context size to 𝑘 , we get 𝐶𝑢,𝑡 (𝑘) = (𝑆𝑢 [𝑡 − 𝑘, 𝑡], 𝐴𝑢 [𝑡 −
𝑘, 𝑡], 𝑅𝑢 [𝑡 − 𝑘, 𝑡]), which is the matrix of all states, actions,
and rewards in the first 𝑘 time slots, respectively.

4.1.4 Reward
The deep reinforcement learning algorithm’s reward func-
tion directly impacts how successfully the learning is done.
When a task is finished, we compute the reward value
derived from its offloading choice depending on the task’s
execution results and return it to the user device. We set the
reward function to match the optimization problem in (13)
as follows:

𝑅(𝑆𝑢,𝑡 , 𝐴𝑢,𝑡 ) = 𝑟 (𝑤𝑢,𝑡 ). (14)

The purpose of a DRL algorithm is to find the optimal
policy 𝜋𝑢 for each user device 𝑢, which is a mapping from
the system state to the action that maximizes the system’s
long-term reward. It can be represented as follows:

𝜋∗𝑢 = argmax
𝜋𝑢

𝐸

[∑︁
𝑡∈T

𝛾𝑡−1𝑅(𝑆𝑢,𝑡 , 𝐴𝑢,𝑡 ) | 𝜋𝑢

]
. (15)

4.2 Network Architecture

We propose a neural network to fit the DRL algorithm’s
Q-value function. To reduce the computational cost of user
devices, we divide the network into two parts. The first part
requires more computation, which we place on the server.
The second part, which is less computationally intensive,
is placed on the user devices. Each user device trains the
algorithm using its own neural network, which implies that
the network parameters are different across user devices.
This helps with the algorithm’s fast convergence.

Fig. 6 depicts the network architecture of our DRL
method. The input of the first part is the context. The
network layer is an RNN, and the output is hidden states.
This is used to determine the uncertainty of our decisions
for the environment. The second part’s input is the output
of GRU and the system’s state at the current time slot, and
the network structure is two fully connected layers. This
component is trained to obtain the features of the system



8

TABLE 2
The Neural Network and Training Hyperparameters

Hyperparameter Value Hyperparameter Value
Encoder Layers 2 Encoder Layer Type GRU
Learning Rate 𝛽 3 × 10−4 Discount Factor 𝛾 0.99

Encoder Hidden Units 10 Clipping Constant 𝜖 0.1
Optimization Method Adam Activation function Relu

state. The third part is the output layer, a one-layer, fully
connected layer. The output of this layer is the predicted
q-values and is used to select the optimal action output
based on the expected q-value of each action state pair.
Denote 𝜃 as the parameters of the network, which contains
the parameters of all layers. In DOSA, every mobile user
device has its own decision network, so we denote 𝜃𝑢 as the
network parameters for user device 𝑢.

4.2.1 Context Layer

Some previous studies have employed meta-reinforcement
learning approaches to improve the capacity of models to
adapt to new environments swiftly. However, some research
has shown that using a latent context variable also in-
creases generalizability and reaches results comparable to
meta-learning approaches. To increase the efficiency of our
algorithm in a real-world edge environment, we employ
GRU [16] to encode context information, which has higher
computational efficiency than LSTM [17], while there is no
significant difference in prediction accuracy. The input of
GRU is the context information of the previous n steps. Fig. 2
shows the hyperparameters of the network, and each GRU
unit has a hidden neuron that learns the interrelationships
between the inputs, through which the model’s estimation
of the environmental uncertainty is revealed. When the
model meets a new environment, these feature values may
enable the model to adjust its policy swiftly.

4.2.2 FC Layer

The Fully Connected (FC) layers extract information of the
state of the environment and tasks from the output from
the context layer and the system observation at current time
slot. The observations and the context variables of different
user devices are different from each other, while the edge
node and channel transmission information are the same.

4.2.3 Output Layer

We use the Dueling DQN technique [18] to estimate the q-
values of state-action pairs. The primary approach is to split
the q-values into two parts: action advantage values and
a state value. Previous works show that the Dueling DQN
technique accelerates the learning efficiency and improves
the training effectiveness.

Both advantage (A) and state value (V) layers consist of
a fully connected layer and a Rectified Linear Unit (ReLU).
The A layer is responsible for proposing the probability
corresponding to the action. The V layer is responsible
for proposing the average probability corresponding to the
state. Denote 𝐴𝑛𝑒𝑡𝑢 (𝑆, 𝑎, 𝐶; 𝜃𝑢) and𝑉𝑛𝑒𝑡𝑢 (𝑆, 𝐶; 𝜃𝑢) as the output

Algorithm 1 : DOSA Algorithm on User Device 𝑢
1: Initialize context buffer 𝑞𝑢;
2: Initialize local neural network parameters 𝜃𝑢 for Advan-

tage and State value Layer;
3: for time slot 𝑡 ∈ T do
4: if new task 𝑤𝑢,𝑡 then
5: Send 𝑆𝑢,𝑡 to scheduling server, receive the inter-

mediate representation 𝑂𝑢,𝑡 .
6: Select action 𝐴(𝑤𝑢,𝑡 ) through (18);
7: if 𝐴(𝑤𝑢,𝑡 ) > 0 then
8: Offload the task to the 𝐴(𝑤𝑢,𝑡 )-th edge server;
9: else

10: Run the task at user device;
11: end if
12: end if
13: if receive 𝑟 (𝑤𝑢,𝑡 ′ ) then
14: Obtain 𝑆𝑢,𝑡 , 𝑟 (𝑤𝑢,𝑡 ′ ) and 𝐶𝑢,𝑡 ′ (𝑘);
15: Send the local offloading history (𝑆𝑢,𝑡 ′ , 𝐴(𝑤𝑢,𝑡 ′ ),

𝑟 (𝑤𝑢,𝑡 ′ ), 𝐶𝑢,𝑡 ′ (𝑘), 𝑆𝑢,𝑡 ) to scheduling server;
16: Update local network parameters;
17: Train the local Advantage layer and State Value

layer by local memory;
18: end if
19: end for

of advantage layer and state value layer, we can calculate the
output Q value as:

𝑄𝑢 (𝑆𝑢,𝑡 , 𝑎, 𝐶𝑢,𝑡 (𝑘); 𝜃𝑢𝑖 ) = 𝑉𝑛𝑒𝑡𝑢 (𝑆𝑢,𝑡 , 𝐶𝑢,𝑡 (𝑘); 𝜃𝑢)+
𝐴𝑛𝑒𝑡𝑢 (𝑆𝑢,𝑡 , 𝑎, 𝐶𝑢,𝑡 (𝑘); 𝜃𝑢)−
1
|A|

∑︁
𝑎∈A

𝐴𝑛𝑒𝑡𝑢 (𝑆𝑢,𝑡 , 𝑎, 𝐶𝑢,𝑡 (𝑘); 𝜃𝑢).

(16)
Using the Q values for the user device 𝑢 we may obtain the
optimal offloading decision given by the model at the 𝑡-th
time slot as:

𝑎∗𝑢,𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈A

𝑄𝑢 (𝑆𝑢,𝑡 , 𝑎, 𝐶𝑢,𝑡 (𝑘); 𝜃𝑢). (17)

4.3 DOSA Algorithm
This chapter introduces our scheduling algorithm. We de-
ploy the DRL model proposed in the previous chapter to
each user device. As the system is running, the model
constantly optimizes the local scheduling strategy based on
the reward earned from each offloading decision. Unlike tra-
ditional centralized scheduling approaches, only local user
information is required as our approach is decentralized
directly to the user. It also makes it harder for the algorithm
to converge since the environment takes into consideration
concurrent running jobs. We apply an asynchronous update
reward method while supporting a personalized model for
each user i.e. the parameters of the user model might be
varied, which speeds up the convergence of the algorithm.

4.3.1 Offloading Algorithm on User Device
The methods in previous works deploy a scheduler in each
user device that contains a complete policy network. This
is impractical and not necessary. Since neural networks
are rather computationally expensive and the local policy



9

neural network needs to synchronize the parameters on
scheduling server-side, user devices will consume too much
time and computational resources in communication and
policy network computation. In this work, we cut the policy
network such that each user device maintains only the
Advantage and State Value layers while the other layers
are deployed on the scheduling server. This way, just two
layers of parameters need to be synchronized periodically
and used for the local decision computation.

The user devices retain the context information in a
queue and add the information for this choice when each
task gives the result. The user device periodically re-
quests that the algorithm model’s parameters deployed in
the scheduling server be updated locally throughout each
episode of the algorithm run. If a user device generates a
new task, it enters the observed system state at the time slot,
information about the new task participating in scheduling,
and fixed-length context information into the scheduling
server model and gets the intermediate representation (IR).
The local Advantage and State value layers use the IR to
make the offload decision.

Because the model knows nothing about the environ-
ment when the algorithm initially starts, random explo-
ration is necessary. Otherwise, the possibility of falling into
a local optimum exists. As a result, we define a stochastic
parameter 𝜖 ∈ (0, 1), and the user device makes a choice for
each new job as follows:

𝐴(𝑤𝑢,𝑡 ) =
{
𝑎∗𝑢, 𝑤.𝑝.𝜖,

random action in A, 𝑤.𝑝.1 − 𝜖, (18)

where "w.p. 𝜖" means the probability for the choice is 𝜖 .
The 𝜖 is raised at each decision point, gradually increas-

ing the proportion of model decisions but not allowing the
model to make 100% of them. This method enables the
model to escape from local optimum spots effectively.

If the task must be executed locally, the user device exe-
cutes it until it is finished. If the job is to be executed on the
edge node, the user device transmits this task throughout
the channel and waits for the task termination message.
When the end-of-task message is returned, the user de-
vice calculates the reward obtained by this task offload-
ing decision and reports it to the scheduling server. This
is an asynchronous updating procedure. In conventional
reinforcement learning, when each task decision is made
and accomplished, the environment delivers the reward for
that decision. This does not match the requirements of the
task scheduling environment since the execution of the job
requires numerous time slots. Therefore, changes need to
be performed asynchronously. After computing the task’s
gain, the user device will transmit the complete decision
information (state, context, choice, and reward) to the buffer
of the edge node to enable future training.

4.3.2 Training Algorithm on Edge Server

Due to the need to synchronize information, our algorithm
is designed to be trained mainly on a broker node server.
The server must keep two deep neural network models: an
evaluation network 𝑁𝑒𝑡𝑒𝑣𝑎𝑙 and a target network 𝑁𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 .
The evaluation network determines which action corre-
sponds to the state. The target network is used to forecast

Algorithm 2 : DOSA Algorithm on Scheduling Server
1: Randomly initialize the parameters of meta policy, 𝜃;
2: Initialize prioritized replay memory M;
3: while True do
4: if receive transition from device 𝑢 then
5: Store the message (𝑆𝑢,𝑡 ′ , 𝑦(𝑤𝑢,𝑡 ′ ), 𝑟 (𝑤𝑢, 𝑡′),

𝐶𝑢,𝑡 ′ (𝑘), 𝑆𝑢,𝑡 ) in replay memory M;
6: Random sample 𝑃 experiences in M;
7: for sample 𝑝 in 𝑃 do
8: Compute Q-value loss through (21);
9: Update parameters 𝜃𝑒𝑣𝑎𝑙 by Adam optimizer;

10: Compute TDE through (19);
11: Update sample 𝑝’s priority in 𝑀 ;
12: end for
13: else if update request from user device 𝑢 then
14: Sent parameters of Value State Layer and

Advantage Layer to 𝑢;
15: else if receive observation from 𝑢 then
16: Generate intermediate representation 𝑂𝑢,𝑡 by

𝑁𝑒𝑡𝑒𝑣𝑎𝑙 and send it to 𝑢;
17: end if
18: if time to update 𝑁𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 then
19: 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 := 𝜃𝑒𝑣𝑎𝑙 ;
20: end if
21: end while

the Q value of the states listed below to maximize the long-
term reward. The evaluation network is periodically up-
dated with the target network’s parameters during training,
and the two networks have identical structures.

The scheduling algorithm deployed on a broker node
principally collects data from each user device to train
the neural network. Whenever a task terminates, the user
device calculates its reward value and transmits it to the
scheduling server. Since we are not sure when the task
terminates, at each moment, the scheduling server may
receive task execution information from the user devices.
In order to store this information in real-time, we maintain
a replay memory in the scheduling server that saves all task
offloading information for subsequent model training.

Also, to reduce the communication time, we update the
model parameters on the server to the user devices when the
server receives the task information from the users. Since the
user device may generate a new task only after the previous
task is finished, this reduces the time of parameter updating
and guarantees that each device is synchronized with the
newest network parameters.

In order to speed up the training, we use the Priori-
tized Experience Replay Buffer technique [19]. We use TD
error [20] as the priority of experience, i.e., the larger the
loss gradient generated by this experience, the higher its
priority to be sampled. The temporal difference error (TDE)
is calculated as follows:

TDE = 𝑟 (𝑤𝑢,𝑡 ) −𝑄𝑢 (𝐴(𝑤𝑢,𝑡 ), 𝑦(𝑤𝑢,𝑡 ), 𝐶𝑢,𝑡 (𝑘))+
𝛾𝑄𝑢 (𝑆𝑢,𝑡 ′ , 𝑦(𝑤𝑢,𝑡 ′ ), 𝐶𝑢,𝑡 ′ (𝑘)).

(19)

For model training, we employ the Double DQN tech-
nique (DDQN) [21]. DDQN can effectively address the q-
value overestimation problem. Two neural networks 𝑁𝑒𝑡𝑒𝑣𝑎𝑙
and 𝑁𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 are deployed on scheduling server. Whenever



10

the server receives a task intermediate representation re-
quest, it generates the output by the 𝑁𝑒𝑡𝑒𝑣𝑎𝑙 . The 𝑁𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡
updates its parameters by loading 𝑁𝑒𝑡𝑒𝑣𝑎𝑙’s parameters pe-
riodically.

The scheduling server trains the neural network once
in each time slot. First, the algorithm randomly samples
a particular amount (batch size) of historical records 𝑃

in the replay memory and sends these records into the
network for training to minimize the gap between the antic-
ipated Q value and the actual reward earned. For a sample
(𝑆𝑢,𝑡 ′ , 𝑦(𝑤𝑢,𝑡 ′ ), 𝑟 (𝑤𝑢,𝑡 ′ ), 𝐶𝑢,𝑡 ′ (𝑘), 𝑆𝑢,𝑡 ), we can first derive the
action for maximum long-term reward in the next time slot
𝑎∗ (𝑡) using 𝑁𝑒𝑡𝑡𝑎𝑟𝑔𝑒𝑡 :

𝑎∗ (𝑡) = argmin
𝑎∈A

𝑄(𝑆𝑢,𝑡 , 𝑎, 𝐶𝑢,𝑡 (𝑘); 𝜃𝑒𝑣𝑎𝑙). (20)

Then we calculate the expected long-term reward 𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑢 as
follows:

𝑄∗
𝑡𝑎𝑟𝑔𝑒𝑡,𝑢 = 𝑟 (𝑤𝑢,𝑡 ′ ) + 𝛾𝑄(𝑆𝑢,𝑡 , 𝑎∗ (𝑡), 𝐶𝑢,𝑡 (𝑘); 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ). (21)

Loss function describe the distance between the expected Q
value and our estimation, we calculate the loss as follows:

𝐿 (𝜃𝑒𝑣𝑎𝑙 , 𝑄∗
𝑡𝑎𝑟𝑔𝑒𝑡 ) =

1
|𝑃 |

∑︁
𝑝∈𝑃

| 𝑄(𝑝(𝑆), 𝑝(𝐴), 𝑝(𝐶); 𝜃𝑒𝑣𝑎𝑙)

−𝑄∗
𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝 |2.

(22)

Then we can perform the gradient decent algorithm and
Adam optimizer [22] to iterative optimization the 𝑁𝑒𝑡𝑒𝑣𝑎𝑙 .
Then we calculate the 𝑇𝐷𝐸 (TD error) of the sample and
update it’s sample priority in replay memory.

5 EXPERIMENTAL RESULTS

In this part, we analyze the performance of DOSA using ex-
tensive simulations. We first present the evaluation settings.
Then, we introduce the baseline algorithms for comparison.
Finally, we provide the ablation experiments for context
variable and prioritized replay memory.

5.1 Environment Setup
We consider a 5 edge nodes edge computing environment.
The parameters of the edge network configuration are
listed in the table below. We presume that the scheduling
algorithm does not consume time slots. In the simulated
environment, task processing and transmission occupy time
slots. Because random parameters influence task generation
in the environment and network transmission, the results of
each running episode may differ.

We clear all tasks in the system, set the time slot index
to 0, and randomly initialize the neural network model in
the algorithm at the start of each episode. We specify the
maximum time slot index, and if the algorithm does not
finish within this time slot, the system forces the episode to
stop. We compare DOSA to the five algorithms listed below:

• All locally (AL): All tasks are executed locally on the
user device. This may cause a high ratio of dropped
tasks.

• Greedy (GR): The greedy algorithm assumes that no
new tasks are created in the system afterwards, calcu-
lates the total possible latency for each offloading de-
cision, and selects the decision that is likely to result

TABLE 3
Range of environment configuration parameters

Parameter Range
Edge node frequency 5 to 25 GHz

Task Size 50 to 5000 MB
User Device frequency 0.1 to 2 GHz

Channel Speed 400 to 2000 MB/s
Probability of task generate 0.3 to 0.5

Edge node task pool capacity 5 to 20 tasks

in the shortest latency. Because the greedy algorithm
cannot predict future changes in the system state, it
chooses to complete each task as quickly as possible,
potentially causing network congestion.

• All to server (AS): This approach offloads all tasks
to the edge server node, analogous to the greedy
algorithm, which eliminates the option of running
tasks on the local user device. It is more likely to
cause network congestion than the greedy algorithm.

• All random choose (RA): Choose an offloading deci-
sion at random from all possible offloading decisions.

• Multi-agent Deep Deterministic Policy Gradient
(MADDPG): The MADDPG algorithm [23] is a state-
of-the-art multi-agent DRL algorithm where decen-
tralized agents learn a centralized critic based on the
observations and actions of all agents.

• Proximal Policy Optimization (PPO): The PPO algo-
rithm [24] is a widely used state-of-art DRL algo-
rithm. It is more robust and stable in training than
other algorithms, and it is well suitable for learning
with a high-dimensional state.

5.2 Result Analysis

To illustrate the performance of the DOSA algorithm, we
run it in the same environment as other baseline algorithms.
The methods employed in the DOSA algorithm are then
exposed to ablation tests. The following table lists the pa-
rameter settings in the simulated environment.

5.2.1 Performance and Convergence
To validate the convergence of the model, the variation
of the rewards with episode for 30 episodes of training
our algorithm in the same environment is displayed in
Fig. 7. We can see that the final reward of the DOSA
algorithm is substantially higher than the other algorithms.
The learning speed of the PPO algorithm is not as fast
as that of the DOSA. To exhibit the flexibility of DOSA
in different environments, the number of user devices is
raised to see the change in the algorithm impact. It can
be observed that DOSA still retains optimal outcomes in
different scale environments. The experimental results show
that MADDPG is slightly better than the PPO algorithm
and DOSA is still the best. We argue that this is due to
the fact that the MADDPG algorithm is continuous, and
although the gumbel softmax [25] can be employed to make
it applicable to discrete environments, it still does not learn
as well as the discrete DQN algorithm. Second, the unpre-
dictability of our environment is already high, and there are



11

0 5 10 15 20 25 30
Episode

−300

−200

−100

0

100
R

ew
ar

d
DOSA
DDPG
PPO
AL
GR
AS
RA

(a) Reward vs. Epside.

0 5 10 15 20 25 30
Episode

0.3

0.4

0.5

0.6

0.7

D
ro

pp
ed

Ta
sk

R
at

io

DOSA
DDPG
PPO
AL
GR
AS
RA

(b) Dropped task ratio vs. Epside.

0 5 10 15 20 25 30
Episode

1500

2000

2500

3000

To
ta

lL
at

en
cy

DOSA
DDPG
PPO
AL
GR
AS
RA

(c) Average Latency vs. Epside.

Fig. 7. Evaluation results for 75 ue and 5 es environment.

0 5 10 15 20 25 30
Episode

−150

−100

−50

0

50

100

150

R
ew

ar
d

DOSA
DDPG
PPO
AL
GR
AS
RA

(a) Reward vs. Epside.

0 5 10 15 20 25 30
Episode

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
ro

pp
ed

Ta
sk

R
at

io

DOSA
DDPG
PPO
AL
GR
AS
RA

(b) Dropped task ratio vs. Epside.

0 5 10 15 20 25 30
Episode

600

800

1000

1200

1400

1600

To
ta

lL
at

en
cy

DOSA
DDPG
PPO
AL
GA
AS
RA

(c) Average Latency vs. Epside.

Fig. 8. Evaluation results for 35 ue and 5 es environment.

0 1000 2000 3000 4000 5000
Total reward

no gru

gru

A
lg

or
ith

m

Total reward in test environment.

Fig. 9. Total reward of DOSA and no context variable DOSA in different
environments.

0 200 400 600 800 1000
Time(s)

DOSA

PPO

MADDPG

A
lg

or
ith

m

Schuduling time in test environment.

Fig. 10. Scheduling time in test environment of different DRL algorithms.

not enough environmental parameters, which makes it more
difficult for the multi-intelligence algorithm to converge due
to the setting that global information cannot be utilized. We
believe that the PPO algorithm does not work well for the
same reason. Since our environment returns a more frequent
and accurate rewards, the value-based learning algorithm is
naturally superior to the Actor Critic method.

Fig. 10 shows the scheduling time required for the dif-
ferent algorithms to schedule the tasks for 30 rounds. It can
be seen that the scheduling time of DOSA is the lowest.
The reason for this has been pointed out in the Section 2: we

reduce the amount of information that needs to be passed in
the channel by not using global information. The efficiency
of the model operation is also improved due to the reduction
of the state space of the system. Secondly, since we only need
a neural network, our runs are also faster than MADDPG
and PPO which need two networks.

Fig. 8 shows the total latency and dropped task ratio
for each episode in training in different environments, and
it can be shown that the dropped task ratio of DOSA is
lower than that of other algorithms. Total latency denotes
the latency of all successfully executed tasks. The reason for
the low latency in the All-local method is that the success
rate of local runs is low, and most locally executed tasks
fail soon, so their latency is not counted. Therefore, the
PPO and All-Local algorithms with higher task failure rates
will have lower Latency. Hence, our reward value design
can effectively reflect the optimization objective. The DOSA
algorithm can jointly optimize the dropped task ratio and
latency objectives.

In order to evaluate the adaptability in different en-
vironments, the network parameters in our environment
for each experiment were randomly generated. Table. 3
illustrates the range we specified for the parameters of the
network. The DOSA got the best performance in all random
environments, and the learning rate was quicker than PPO
and MADDPG. When the number of user devices rises,
DOSA can efficiently alter the policy and swiftly adapt to the
new environment. Although we employ the asynchronous
reward update mechanism on the PPO and MADDPG al-
gorithm, the convergence time of the PPO and MADDPG is
slower.



12

5.2.2 Impact of Asynchronous Reward Update
Asynchronous reward update: DOSA delivers the task re-
ward after the task is completed, rather than returning to
the environment. We suppose that this will speed up the
convergence of the algorithm.

For immediate reward update DOSA, we update the
model at each time slot by computing the reward (computa-
tion and dropped tasks) generated by the full environment
in that time slot. When comparing this DOSA with the
immediate reward update to the DOSA with the asyn-
chronous reward update, we observe that the DOSA with
the delayed asynchronous reward update is much quicker
and surpasses the DOSA without it. Fig. 11 illustrates the
reward change across training episodes. It can be seen
that the dropped task rate of DOSA without asynchronous
updates approaches 50%. This is 20% higher than for DOSA
utilizing asynchronous updates. Although the total latency
of successful tasks for DOSA is greater than for DOSA
without asynchronous updates, this is because DOSA has
more finished tasks.

5.2.3 Impact of Prioritized Replay Memory
Since many tasks in the environment contain roughly iden-
tical information, only a proportion of the samples will
substantially impact model training. Therefore, adopting
prioritized replay memory for sampling can enhance the
speed of training. Intuitively, the higher the loss created by
a sample, the larger the increase it is expected to achieve.

In Fig. 12a, we compare the algorithm that employs
prioritized replay memory with the algorithm that uses
random sampling. As can be observed, the algorithm with-
out prioritized replay memory learns slower than the al-
gorithm with prioritized replay memory. But eventually,
they tend to have the same outcome. As the number of
training episodes increases, the randomly sampled model
also iterates through all the samples.

5.2.4 Impact of decentralized Training
In DOSA, different offloading policies are generated for
different user devices utilizing a decentralized way to train
the model. The advantage of this strategy is that the local
user devices do not need to know the information of other
devices, but need to synchronize the parameters periodi-
cally. In Fig. 12b, we remove the Advantage and State Value
Layer from all user device schedulers; each task offloading
decision is made by the model in the scheduling server and
compared with the method for decentralized decision mak-
ing. The experiments reveal that the decentralized algorithm
learns more effectively than the centralized one, and the
final output is slightly better than the centralized one.

5.2.5 Impact of Context Variable
Encoding context information: Some meta-reinforcement
learning research [26]–[28] has demonstrated that a con-
text variable may significantly increase models’ flexibility
in different environments. Work on Meta-Q-learning [29]
shows that a simple context variable can fulfill this objective.
We expect this technique will enable the algorithm to learn
quicker in different environments.

We randomly generated ten testing environments in the
range of parameters in Table. 3, which are of the same size

(number of user devices and edge nodes) but with dif-
ferent network and computational configurations (network
speed, computational speed). Ten episodes are trained in
each environment to examine the performance of the DOSA
algorithm with and without a context variable.

Fig. 9 shows the comparison of the total reward in all
environments. Fig. 12c shows the change of the reward of
DOSA and no context variable DOSA in one of the envi-
ronments. It can be seen that the total value of the reward
of DOSA is higher than the no context variable DOSA, and
the learning rate of the agent with context encoding is a bit
faster.

6 RELATED WORK

6.1 Task Offloading in MEC
Mobile edge computing techniques can effectively improve
the efficiency of application computing in user devices, but
as shown in Fig. 1, the variety and connection relationship
of user devices are complex, and it is a challenge to match
between multiple heterogeneous devices and tasks. Many
previous works [3], [30], [31] in MEC treated the task of-
floading problem as a traditional mathematical optimization
problem, solving it with Dynamic Programming, Mathemat-
ical Programming, and Genetic algorithms to find the best
scheduling policy. For example, Xiao et al. [30] study the
workload offloading problem in fog computing to maximize
the QoS (Quality of Service). They proposed a decentralized
ADMM-based method where an edge server can offload
the received tasks to a cloud computing server or other
edge servers. They formulated a non-convex optimization
problem and divided it into convex sub-problems. Zhao et
al. [3] considered a task offloading problem with task depen-
dencies in their work and considered the impact of service
caching and placement in edge devices. This is relaxed to
a linear optimization problem and a convex optimization
problem, respectively, and solved using a convex optimiza-
tion solver. Eshraghi et al. [31] designed an algorithm that
optimizes the offloading choices of mobile devices, consider-
ing their unknown computation requirements. The problem
with traditional methods is the overall efficiency over long
periods is not considered, only one or a small quantitative
part of the task is optimized. They are not suitable for
edge computing environments that run for long periods and
change dynamically.

Some other works [4], [32] treat task offloading as a game
theory problem, expecting to schedule multiple user de-
vices by finding offloading strategies that can reach a Nash
equilibrium state. For example, Chen et al. [32] considered
a many-to-many task offloading problem, where players
have to consider the offloading decision and choose the
transmission channel. They proved that the game reaches
Nash equilibrium when the beneficiary players reach the
maximum value. After that, they developed a decentralized
decision algorithm to reach the Nash equilibrium. In the
work of Ding et al. [4], a game was developed where each
user makes a selfish decision and expects to minimize long-
term cost. Moreover, two game-based algorithms were de-
veloped and proved that they can reach Nash equilibrium.
These algorithms are not applicable to dynamically chang-
ing environments and are too computationally expensive



13

0 5 10 15 20 25 30
Episode

−400

−300

−200

−100

0

100
R

ew
ar

d DOSA
DOSA-syn

(a) Reward vs. Episode of DOSA
and synchronized DOSA.

0 5 10 15 20 25 30
Episode

0.25

0.30

0.35

0.40

0.45

0.50

D
ro

pp
ed

Ta
sk

R
at

io

DOSA
DOSA-syn

(b) Dropped Task Ratio vs. Episode
of DOSA and synchronized DOSA.

0 5 10 15 20 25 30
Episode

2000

2200

2400

2600

2800

3000

To
ta

lL
at

en
cy

DOSA
DOSA-syn

(c) Finished Task Latency vs.
Episode of DOSA and synchro-
nized DOSA.

Fig. 11. Ablation experiment result of asynchronous reward update.

0 5 10 15 20 25 30
Episode

−50

0

50

100

150

R
ew

ar
d

DOSA
DOSA-no-pr

(a) Comparison of no prioritized re-
play memory DOSA and DOSA.

0 5 10 15 20 25 30
Episode

0

50

100

150

200

R
ew

ar
d

DOSA
DOSA-central

(b) Comparison of centralized
DOSA and decentralized DOSA.

0 5 10 15 20 25 30
Episode

−300

−200

−100

0

100

200

R
ew

ar
d

DOSA
DOSA-no-ctx

(c) Comparison of DOSA and no
context variable DOSA.

Fig. 12. Impact of prioritized replay memory, decentralized training and context variable.

with the main value being in the design of the rules, rather
than the actual scheduling.

6.2 DRL Task Offloading Methods
Unlike traditional methods, some previous works [2], [6],
[7], [10], [33] use DRL methods to minimize the computa-
tional and communication costs of the system over long-
term execution. Since DRL methods perform model training
through the system state transitions, they can adapt to dy-
namic environments. However, this also brings the problem
of the high training cost. In the work of Huang et al. [2],
power consumption and computational efficiency are jointly
considered and transformed into a non-convex optimization
problem. This non-convex optimization problem is divided
into two parts: task offloading decision and channel and
charging resource allocation. The first part is approximately
solved using a DRL method, and the second part is solved
using a convex optimization problem solver. This work does
not explore the problem of distributed execution and the
cost necessary for task transmission. The work by Qiu et
al. [7] obtains samples from different environments for train-
ing employing decentralized reinforcement learning. They
use a deep network neuroevolution algorithm to obtain the
optimal network model and employed the n-step learning
approach to improve the speed of model training. This
work focuses on employing multiple DRL algorithms to
enhance the scheduling of the model but ignores the cost
required to run the model for scheduling. Tang et al. [10]
propose a D3QN-based reinforcement learning algorithm

where each user device makes decisions independently and
uses LSTM to predict the next system state. Wang et al. [6]
use a meta-reinforcement learning approach [33] to offload
optimization for tasks with dependencies and use a seq2seq
network to encode the task Directed Acyclic Graphs (DAG).
It is shown that the meta-learning algorithm can be trained
in different environments and adapt quickly to new environ-
ments. Both work of Tang et al. and Wang et al. suffer from
high running costs, and both models are challenging to im-
plement on user devices with low computational capacity.
In order to safeguard user privacy and execute lightweight
scheduling, it is important to build a new algorithm that can
run in a distributed way and move the computational cost
to the server.

Unlike these works, our algorithm cuts the neural net-
work so the user device does not have to save large net-
works. We also consider the scenario of concurrent task
execution, which was not considered in previous works.

7 CONCLUSION

In this work, we study the indivisible and delay-aware
task offloading problem in edge computing. We designed
a decentralized scheduling algorithm based on deep re-
inforcement learning, which does not need to know the
complete information of the environment but learns in the
process of offloading so that it can adapt to the dynamic
network. The simulation result shows that our algorithm
can significantly reduce task delay and drop the task loss
ratio when facing tasks and data-intensive scenarios.



14

This work can be extended in the following directions:
First, it is interesting to consider DAG modeling tasks and
offload them to different edge servers for execution. Second,
it’s helpful to consider edge service cache. Different kinds
of servers may cache various services. For different types
of tasks, it is necessary to consider the service cache state
on the server for scheduling. The above technologies can
make our scheduling algorithm better suited to real-world
environments.

8 ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (No.61872175), Natural Science Foun-
dation of Jiangsu Province (Grant No.BK20201250). Jidong
Ge is the corresponding author.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
2016.

[2] L. Huang, S. Bi, and Y. A. Zhang, “Deep reinforcement learning for
online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mob. Comput., vol. 19, no. 11,
pp. 2581–2593, 2020.

[3] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,”
IEEE Trans. Parallel Distributed Syst., vol. 32, no. 11, pp. 2777–2792,
2021.

[4] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic
approach to computation offloading strategy optimization in end-
edge-cloud computing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 6, pp. 1503–1519, 2022.

[5] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning
for pervasive edge computing: A decentralized computation of-
floading algorithm,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 2, pp. 411–425, 2021.

[6] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta rein-
forcement learning,” IEEE Trans. Parallel Distributed Syst., vol. 32,
no. 1, pp. 242–253, 2021.

[7] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and col-
lective deep reinforcement learning for computation offloading: A
practical perspective,” IEEE Trans. Parallel Distributed Syst., vol. 32,
no. 5, pp. 1085–1101, 2021.

[8] Z. Chen and X. Wang, “Decentralized computation offloading for
multi-user mobile edge computing: a deep reinforcement learning
approach,” EURASIP J. Wirel. Commun. Netw., vol. 2020, no. 1, p.
188, 2020.

[9] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A distributed
deep reinforcement learning technique for application placement
in edge and fog computing environments,” IEEE Transactions on
Mobile Computing, pp. 1–1, 2021.

[10] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions
on Mobile Computing, pp. 1–1, 2020.

[11] C. Cicconetti, M. Conti, and A. Passarella, “Architecture and
performance evaluation of distributed computation offloading in
edge computing,” Simul. Model. Pract. Theory, vol. 101, p. 102007,
2020.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nat., vol. 518, no.
7540, pp. 529–533, 2015.

[13] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge com-
puting for autonomous driving: Opportunities and challenges,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[14] P. Verma and S. K. Sood, “Fog assisted-iot enabled patient health
monitoring in smart homes,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 1789–1796, 2018.

[15] M. Syafrudin, N. L. Fitriyani, G. Alfian, and J. Rhee, “An afford-
able fast early warning system for edge computing in assembly
line,” Applied Sciences, vol. 9, no. 1, 2019.

[16] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, A. Moschitti, B. Pang, and W. Daelemans, Eds. ACL,
2014, pp. 1724–1734.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[18] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and
N. Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proceedings of The 33rd International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York, New
York, USA: PMLR, 20–22 Jun 2016, pp. 1995–2003.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” in 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[20] G. Tesauro, “Temporal difference learning and td-gammon,” J. Int.
Comput. Games Assoc., vol. 18, no. 2, p. 88, 1995.

[21] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learn-
ing with double q-learning,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, D. Schuurmans and M. P. Wellman, Eds. AAAI
Press, 2016, pp. 2094–2100.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[23] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 6379–6390.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR, vol.
abs/1707.06347, 2017.

[25] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[26] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for
partially observable mdps,” in 2015 AAAI Fall Symposia, Arlington,
Virginia, USA, November 12-14, 2015. AAAI Press, 2015, pp. 29–37.

[27] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-
based control with recurrent neural networks,” CoRR, vol.
abs/1512.04455, 2015.

[28] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient
off-policy meta-reinforcement learning via probabilistic context
variables,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, ser. Proceedings of Machine Learning Research, K. Chaud-
huri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 5331–
5340.

[29] R. Fakoor, P. Chaudhari, S. Soatto, and A. J. Smola, “Meta-q-
learning,” in International Conference on Learning Representations,
2020.

[30] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for
fog computing networks with fog node cooperation,” in IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications,
2017, pp. 1–9.

[31] N. Eshraghi and B. Liang, “Joint offloading decision and resource
allocation with uncertain task computing requirement,” in IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications,
2019, pp. 1414–1422.

[32] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[33] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. PMLR,
2017, pp. 1126–1135.



15

Ye Fan received the BS degree from the De-
partment of Computer Science and Technol-
ogy, Nanjing University, Nanjing, China, in 2021,
where he is currently working toward the Master
degree under the supervision of associate pro-
fessor Jidong Ge. Currently, his research inter-
ests include mobile edge computing and rein-
forcement learning.

Jidong Ge (Member, IEEE) is an Associate Pro-
fessor at Software Institute, Nanjing University.
He is also a member of the State Key Lab-
oratory for Novel Software Technology. He re-
ceived his PhD degree in Computer Science
from Nanjing University in 2007. His current re-
search interests include decentralized comput-
ing and edge computing, services computing,
natural language processing and intelligent soft-
ware engineering, machine learning and deep
learning. His research results have been pub-

lished in more than 100 papers in international journals and conference
proceedings including IEEE TPDS, IEEE TMC, IEEE/ACM TNET, IEEE
TSC, IEEE/ACM TASLP, ACM TKDD, JASE, COMNET, JPDC, FGCS,
JSS, Inf. Sci., JNCA, JSEP, ESA, ExpSys, ICSE, AAAI, EMNLP, ASE,
IWQoS, GlobeCom etc.

Sheng Zhang (Member, IEEE) received the BS
and PhD degrees from Nanjing University, Nan-
jing, China, in 2008 and 2014, respectively. He
is currently an associate professor with the De-
partment of Computer Science and Technology,
Nanjing University, China. He is also a member
of the State Key Laboratory for Novel Software
Technology. His research interests include cloud
computing and edge computing. To date, he has
published more than 80 papers, including those
appeared in the IEEE Transactions on Mobile

Computing, IEEE/ACM Transactions on Networking, IEEE Transactions
on Parallel and decentralized Systems, IEEE Transactions on Com-
puters, MobiHoc, ICDCS, INFOCOM, SECON, IWQoS, and ICPP. He
received the Best Paper Award of IEEE ICCCN 2020 and the Best Paper
Runner-Up Award of IEEE MASS 2012. He is the recipient of 2015 ACM
China Doctoral Dissertation Nomination Award. He is a senior member
of the CCF.

Jie Wu (F’09) is the Director of the Center for
Networked Computing and Laura H. Carnell pro-
fessor at Temple University. He also serves as
the Director of International Affairs at College of
Science and Technology. He served as Chair of
Department of Computer and Information Sci-
ences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for Interna-
tional Affairs from the fall of 2015 to the summer
of 2017. Prior to joining Temple University, he
was a program director at the National Science

Foundation and was a distinguished professor at Florida Atlantic Univer-
sity. His current research interests include mobile computing and wire-
less networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions on
Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and decentralized Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016,
and IEEE CNS 2016, as well as program co-chair for IEEE INFOCOM
2011 and CCF CNCC 2013. He was an IEEE Computer Society Dis-
tinguished Visitor, ACM Distinguished Speaker, and chair for the IEEE
Technical Committee on decentralized Processing (TCDP). Dr. Wu is a
CCF Distinguished Speaker and a Fellow of the IEEE. He is the recipient
of the 2011 China Computer Federation (CCF) Overseas Outstanding
Achievement Award.

Bin Luo is a full professor with the Software
Institute, Nanjing University. He is also a member
of the State Key Laboratory for Novel Software
Technology. His main research interests include
cloud computing, computer network, decentral-
ized computing and edge computing, services
computing, natural language processing and in-
telligent software engineering, machin learning
and deep learning. His research results have
been published in more than 90 papers in in-
ternational journals and conference proceedings

including IEEE TPDS, IEEE TMC, ACM TKDD, IEEE TSC, COMNET,
JPDC, FGCS, JSS, Inf. Sci., JNCA, ESA, ExpSys, EMNLP, GlobeCom
etc.


	Introduction
	Motivation
	Cost of Centralized Scheduling
	Concurrently Running Tasks
	Convergence of DRL

	Problem Formulation
	User Device
	Task
	Offloading Decision
	Local Computing

	Edge Server
	Transmission Queue
	Edge Computing

	Problem Definition

	Algorithm Design
	DRL Model
	State
	Action
	Context
	Reward

	Network Architecture
	Context Layer
	FC Layer
	Output Layer

	DOSA Algorithm
	Offloading Algorithm on User Device
	Training Algorithm on Edge Server


	Experimental Results
	Environment Setup
	Result Analysis
	Performance and Convergence
	Impact of Asynchronous Reward Update
	Impact of Prioritized Replay Memory
	Impact of decentralized Training
	Impact of Context Variable


	Related Work
	Task Offloading in MEC
	DRL Task Offloading Methods

	Conclusion
	Acknowledgments
	References
	Biographies
	Ye Fan
	Jidong Ge
	Sheng Zhang
	Jie Wu
	Bin Luo


